Deprecated: mysql_connect(): The mysql extension is deprecated and will be removed in the future: use mysqli or PDO instead in /home/wadicoeg/public_html/config.php on line 4
Wadico
Hazardous Location Equipment

Hazardous Location Equipment

 

Hazard Locations Equipment

In electrical engineering, a hazardous location is defined as a place where concentrations of flammable gases, vapors, or dusts occur. Electrical equipment that must be installed in such locations is especially designed and tested to ensure it does not initiate an explosion, due to arcing contacts or high surface temperature of equipment.

The introduction of electrical apparatus for signaling or lighting in coal mines was accompanied by electrically-initiated explosions of flammable gas and dust. Technical standards were developed to identify the features of electrical apparatus that would prevent electrical initiation of explosions. Several physical methods of protection are used. The apparatus may be designed to prevent entry of flammable gas or dust into the interior. The apparatus may strong enough to contain and cool any combustion gases produced internally. Or, electrical devices may be designed so that they cannot produce a spark strong enough to ignite a specified hazardous gas.

Electrical ignition hazard

A household light switch may emit a small, harmless visible spark when switching. In an ordinary atmosphere this arc is of no concern, but if a flammable vapor is present, the arc might start an explosion. Electrical equipment intended for use in a chemical factory or refinery is designed either to contain any explosion within the device, or is designed not to produce sparks with sufficient energy to trigger an explosion.

Many strategies exist for safety in electrical installations. The simplest strategy is to minimize the amount of electrical equipment installed in a hazardous area, either by keeping the equipment out of the area altogether or by making the area less hazardous by process improvements or ventilation with clean air. Intrinsic safety, or non-incendive equipment and wiring methods, is a set of practices for apparatus designed with low power levels and low stored energy. Insufficient energy is available to produce an arc that can ignite the surrounding explosive mixture. Equipment enclosures can be pressurized with clean air or inert gas and designed with various controls to remove power or provide notification in case of supply or pressure loss of such gases. Arc-producing elements of the equipment can also be isolated from the surrounding atmosphere by encapsulation, immersion in oil, sand, etc. Heat producing elements such as motor winding, electrical heaters, including heat tracing and lighting fixtures are often designed to limit their maximum temperature below the autoignition temperature of the material involved. Both external and internal temperatures are taken into consideration.

As in most fields of electrical installation, different countries have approached the standardization and testing of equipment for hazardous areas in different ways. As world trade becomes more important in distribution of electrical products, international standards are slowly converging so that a wider range of acceptable techniques can be approved by national regulatory agencies.

Area classification is required by governmental bodies, for example by the U.S. Occupational Safety and Health Administration and compliance is enforced.

Documentation requirements are varied. Often an area classification plan-view is provided to identify equipment ratings and installation techniques to be used for each classified plant area. The plan may contain the list of chemicals with their group and temperature rating, and elevation details shaded to indicate Class, Division(Zone) and group combination. The area classification process would require the participation of operations, maintenance, safety, electrical and instrumentation professionals, the use of process diagrams and material flows, MSDS and any pertinent documents, information and knowledge to determine the hazards and their extent and the countermeasures to be employed. Area classification documentations are reviewed and updated to reflect process changes.